Hypomethylated pollen bypasses the interploidy hybridization barrier in Arabidopsis.

نویسندگان

  • Nicole Schatlowski
  • Philip Wolff
  • Juan Santos-González
  • Vera Schoft
  • Alexey Siretskiy
  • Rod Scott
  • Hisashi Tamaru
  • Claudia Köhler
چکیده

Plants of different ploidy levels are separated by a strong postzygotic hybridization barrier that is established in the endosperm. Deregulated parent-of-origin specific genes cause the response to interploidy hybridizations, revealing an epigenetic basis of this phenomenon. In this study, we present evidence that paternal hypomethylation can bypass the interploidy hybridization barrier by alleviating the requirement for the Polycomb Repressive Complex 2 (PRC2) in the endosperm. PRC2 epigenetically regulates gene expression by applying methylation marks on histone H3. Bypass of the barrier is mediated by suppressed expression of imprinted genes. We show that the hypomethylated pollen genome causes de novo CHG methylation directed to FIS-PRC2 target genes, suggesting that different epigenetic modifications can functionally substitute for each other. Our work presents a method for the generation of viable triploids, providing an impressive example of the potential of epigenome manipulations for plant breeding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species.

The success or failure of interspecific crosses is vital to evolution and to agriculture, but much remains to be learned about the nature of hybridization barriers. Several mechanisms have been proposed to explain postzygotic barriers, including negative interactions between diverged sequences, global genome rearrangements, and widespread epigenetic reprogramming. Another explanation is imbalan...

متن کامل

Non-reciprocal Interspecies Hybridization Barriers in the Capsella Genus Are Established in the Endosperm

The transition to selfing in Capsella rubella accompanies its recent divergence from the ancestral outcrossing C. grandiflora species about 100,000 years ago. Whether the change in mating system was accompanied by the evolution of additional reproductive barriers that enforced species divergence remained unknown. Here, we show that C. rubella and C. grandiflora are reproductively separated by a...

متن کامل

Overcoming Hybridization Barriers by the Secretion of the Maize Pollen Tube Attractant ZmEA1 from Arabidopsis Ovules

A major goal of plant reproduction research is to understand and overcome hybridization barriers so that the gene pool of crop plants can be increased and improved upon. After successful pollen germination on a receptive stigma, the nonmotile sperm cells of flowering plants are transported via the pollen tube (PT) to the egg apparatus for the achievement of double fertilization. The PT path is ...

متن کامل

Interploidy hybridization barrier of endosperm as a dosage interaction

Crosses between plants at different ploidy levels will often result in failure of endosperm development. The basis of this phenomenon has been attributed to parental gene imprinting of genes involved with endosperm development but a review of the data from maize indicates a dosage interaction between the contributions of the female gametophyte and the primary endosperm nucleus to early endosper...

متن کامل

AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis.

This paper describes the molecular, kinetic, and physiological characterization of AtSTP6, a new member of the Arabidopsis H(+)/monosaccharide transporter family. The AtSTP6 gene (At3g05960) is interrupted by two introns and encodes a protein of 507 amino acids containing 12 putative transmembrane helices. Expression in yeast (Saccharomyces cerevisiae) shows that AtSTP6 is a high-affinity (K(m)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 26 9  شماره 

صفحات  -

تاریخ انتشار 2014